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INSTANTONS AND TRANSVERSE PURE GAUGE FIELDS 
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The phenomenon of the ambiguity of the Coulomb gauge in Yang-MiUs theories, first discovered by Gribov, is 
studied for the instanton solutions. 

It is shown that in the Coulomb gauge the instanton connects a non-vanishing transverse pure gauge field in the 
remote (Euclidean) past to an analogous one in the far future. 

Quite recently Gribov [1 ] has found a new"patho- 
logical" effect in the Yang-Mills theories. While in 
Q.E.D. the transversality condition 

3iA  i = 0 (1) 

completely fixes the gauge, leading to a uni~lue solu- 
tion of the Cauchy problem, the same thing does not 
happen in non-Abelian gauge theories. 

In fact, for the latter case, Gribov has shown that 
in general there exist space dependent gauge transfor- 
mations that connect different solutions of eq. (1); 
i.e., the condition (1)is  not enough to determine un- 

ambiguously the potential A i ( x ) ,  once the field Fur 
is known. 

In particular, for a vanishing field Fu~ =0 the trans- 
versality condition (1) can be written in the form 

() i (u- loiu)  = 0 (2) 

where U(x, t)  is a gauge group element that generates 
a pure gauge potential: 

Au = (U -13iU ) = 0 (3) 

In Q.E.D. the analogue ofeq.  (2)is:  

V 2A = 0 (4) 

where 

A. : a.A. (5) 
Of course, the regular solutions of (4) are space inde- 
pendent and therefore A i = 0 is the only well-behaved 
potential that in the Coulomb gauge (1) represents the 
field Fuu = O. 

t On leave from Istituto di Fisica delrUniversit~-Torino. 

On the contrary Gribov has shown that for non- 

Abelian U eq. (2) has non-trivial solutions; in particu- 
lar he considers the SU(2) case and shows that there 
exist spherically symmetric solutions of the form: 

U(x, t) = exp[i~(r, t) e . x / r ] ,  r 2 = x 2 (6) 

where ~ satisfies the equation 

32ot 2 3a s in2a  
- -  -~ . . . . . .  O ;  ( 7 )  
Or 2 r 3r  r 2 

of course tbr r ~ 0, a must vanish (mod. lr) at least as 
r in order to avoid singularities at r = 0: 

~(r) ~ mr + O(r). (8) 
r~0 

The substitution s = In r reduces eq. (7) to the equa- 
tion of a pendulum with friction in a constant gravita- 
tional field t~ 

32a/Os 2 + 3a/Os - sin 2a = 0. (9) 

The potential relevant to eq. (9) has the form (fig. 1) 

u(a)  = - 2 sin2a. (10) 

11 The equations (7) and (9) were already considered in ref.[2], 
but they were not treated in a quite correct way. 
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Ilence, remembering the initial condi t ion  (8), one gets 

that,  beyond  the trivial solut ion a(s)  = nn ,  other solu- 
tions are possible: at s = _oo (r = 0), the pendulum 
starts from a point of unstable equil ibr ium a = nn  and 
then for s ~ +,~ ( r ~  oo) it asymptotical ly reaches the 
stable equil ibrium at a = (n -+ ~ ) n ;  therefore the solu- 
tions o f e q .  (7) are characterized by 

0 trivial solution 
°t(r ~ °°) ec(r = 0) = n (11) 

-+ 2- non-trivial so lu t ions .  

The non-trivial solutions of eq. (7) inserted in (6) and 
(3) give nonvanishing transverse pure gauge fields. 

In this letter we are going to show that configura- 
tions of this kind are present in the ins tanton solution 
[3] of the Euclidean Yang-Mills equations.  The in- 
s tanton can be writ ten in fl~e fonn:  

x 2 
- g - 1  (12) 

A~ x 2 + h 2 3ug 

where the SU(2 )e l emen t  g(x) i s  

x4 - i ° " x = -  - [ ° ' i x  I (13) g ( x ) =  x / ~  exp i/3(r, x 4 ) - - -  , 

with 

/3(r, x4)  = -- arctg (r/x4). (14) 

The ins tanton solution (12) can be writ ten in the 
Coulomb gauge (1) performing a spherically symmet-  
ric gauge t ransformation:  

B u = h l A u h  + h -1 Outt, (15) 

where 

h(x)  = exp [i'),(r, x4)er .x/r]. (16) 

The transversality condi t ion 

3;~;  = 0 (1 7)  

expressed in terms o f" / t akes  the form [2]: 

323 ' + 2 37 x42 - r2 + X2 2x4 
. . . . .  sin 2 7 . . . .  cos 23' 

3r2 r Or r2(x 2 +X2) r (x2+X2)  

0c(r, x4)  =/3(r, x4)  + ')'(r, x 4 ), (19) 

where 13 is given by (14). 
In fact, f o rx  2 >> ~2 one gets that such an a just 

satisfies the Gribov equat ion (7). 
This fact is not surprising: in fact for x 2 >~ ~.2 the 

ins tanton becomes a pure gauge field: 

t3 u = U -1 c3 u U(I  + O(X2/x2)) ,  (20) 

where 

U(x) = g(x)  h (x) = exp[ ia( r ,  x4)  n .  x/r] (21) 

and hence theltransversality condi t ion  (17) takes the 
fonn  (7). 

A priori, for Ix41~ X the ins tanton field could 
tr ivMly vanish, once the Coulomb gauge is chosen; on 
the contrary,  we will show that it corresponds,  both 
for positive and negative large x 4, to non-trivial solu- 
tions of  the Gribov equat ion (7). 

To this aim we discuss the behaviour of  a(r,  x4)  as 
a function o f r  at large fixed x 4 ; i n  particular,  we look 
at the limit in the left-hand-side of (1  1), for Ix41 ~ X. 
The defini t ion (14) says that at r = 0 the phase/3 is an 
integer multiple of  n; we choose a de terminat ion  such 
that (fig. 21) 

/3(r=O,x4)=O,  x 4 < 0 .  (22) 

Moreove r, one gets from (14) that keeping x 4 tixed 
(and negative) and by increasing r, also/3 increases, un- 
til n/2 ~ z is reached for r -* oo: 

/3(r ~ 0% x4 ) = n/2, x 4 < 0. (23) 

Actually, in the limit r ~ 0% arctg/3 passes from + oo to 

_ ,,o when x 4 changes sign, but/3 does not change [it 
passes f r o m n / 2 -  e t o n / 2 + e w i t h e  = O ( x 4 / r ) ] ;  
therefore, one also has: 

/3(r--,- oo, x4)  = n/2, x 4 > 0 .  (24) 

Finally, when r decreases, at fixed (and posi t ive)x4,  
/3 increases and reach the value n at r = 0. 

/3(r = O, x4)  = rr , x 4 > O .  (25) 

-~ 2 .X4(X 4 + k 2 ) 
+ (18) 

r(x 2 + X2 )2 

At large Euclidean four-dimensional distances 
(x 2 >> h2), eq. (18 )becomes  much simpler if  one uses 
the variable: 

~2 Let us note that eq. (23) does not depend on the actual 
value of x4 ; of course a completely different result would 
have been obtained if the limx4~ ~ were pertbrmed be- 
fore the l i turgy;  however, as we are interested in the be- 
haviour of the field all over the space at a given time, the 
limx4~_. ~,, must be performed at the end. 
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Fig. 2. 

The behaviour of  3'(r, x4) can be inferred by eq. (18), 
by imposing that h(x) [defined in eq. (16)] is regular 
all over the space-time (we do not want to change the 
topological number of the instanton). 

At r = 0 the phase 3, must be a multiple of rr; the 
continuity of  3' prevents jumps and then we can choose 

3'(r = 0, x4) = 0 (26) 

for any x 4 ; therefore by (19), (22) and (25) w'e get: 

0 x 4 < 0  
a ( r  = O, x4)  = 3(r = O, x4)  = (27) 

n x 4 > 0  " 

By deriving eq. (18)wi th  respect to x4, one gets [2] 
that for any value o f x  4 

03'/0x 4 - ~ O(1/r) ;  (28) 

then for large r the phase 3' does not depend on x 4. 
At x 4 = 0 eq. (18) becomes (using the variable 

s = In r) 

023'+3__3'+ ( 1 -  X2e -2S \  
. . . .  s i n 2 7 =  O. 
Os 2 Os 1 + X 2 e -2s)  (29) 

Thus, for s ~ + 0% it behaves as if the potential  u (a) 
were reversed with respect to that one depicted in 
fig. 1 ; hence, one expects that 3'(r = oo, x4 ) is an in- 
teger multiple of  n. 

By combining the information from eq. (9), sum- 
marized in (I 1), with those contained in (27), one 
realizes that the only possibility is 

3'(r --* ~,  x4)  = 0 (30) 

and therefore 

o¢(r ~ ~,  x4)  = 3(r -* ~, x4)  = 7r/2 (31 ) 

for any value o f x  4. 
Finally, the insertion of (27 )and  (31 ) into the left- 

hand side of  (11) shows that the instanton solution 
performs a transition from a non-trivial transverse 
pure gauge field at x 4 = - oo to another one at x 4 =+oo. 

This result can be intuitively understood by looking 
at the topological charge q of  the instanton Bu, calcu- 
lated as a flux across the surface depicted in fig. 2. 
One has 

q = 9+ -- 9_ + eL,  (32) 

where 9+ and 9_ are the fluxes across the top and bot- 
tom surfaces of the cylinder of fig. 2: 

I f d 3 x  "ij  Tr(BiBjBk) x4 (33) 
9~ - 247r 2 =._ 

and 9L is the flux across the lateral surface of the same 
cylinder ~3 

9L = 8r~ --~1 _f~ d x 4 f  d2Siei/k Tr(BjBkB4). (34) 

By using B u defined in (15) one gets by direct calcula- 
tion 

/ 1 ) 
9L n 3 " ( r ~ ' x 4 )  + z sin 23"(r--*°%x4) x4 =- 

(35) 
The transversality condition (18) implies that 
3'(r = o% x4 ) does not depend on x 4 (eq. (28)); there- 
fore in the Coulomb gauge 91. = 0 and the whole topo- 
logical charge q = 1 must be shared between 9+ and 

- - 9 - - "  

If in the remote past the potential B u were rapidly 
vanishing, at x 4 "¢ -~, the phase a(r, x4) would vanish 
for any value o f r  and one would have 9_ = O; hence, 
one should have 9+ = 1 and then, at x 4 >~ ~,, a(r= ~, 
x4)  = 0 and a ( r  = 0, x4)  = rr. But in the Coulomb 
gauge such a possibility is forbidden by eq. (7), that 
implies (11); what actually happens is that in the 
Coulomb gauge one gets (in disagreement with ref. [2] ): 

= 1 (36) 9+ - 9_ = i -  

The appearance of  half-integer " topological"  charges 
is eqsily understood remembering that under the con- 
dition (31) the value of the group element lim x ~  
h (x), at large fixed x4, does depend on the direction 
x/r. Therefore the Euclidean space R 3 does not be- 

~3 Both in (33) and in (34) the limit x,,,~ *- ~ must be taken 
after having performed the space integral. 
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come S 3 ; in such a case there is no topological reason 
to compel the fluxes 9 ,  to be integer; it is for that 
reason that we have used quota t ion  marks to the ex- 
pression: hal f integer "topological"  charges. 

In conclusion,  one can say that, in the Coulomb 
gauge there are three degenerate vacuum states (/~v 
= 0) (at the classical level): 

i) the usual perturbative vacuum A i = 0, with 
vanishing topological charge, 

I 
ii) a state with "topological"  charge ~ = - ~,  corre- 

sponding to a ( r  ~ oo) _ a(O)  = 7r/2, 
1 iii) a state with "topological"  charge ~ = + ~,  cor- 

responding to ct(r ~ o~) .... a (0 )  = - n / 2 ,  and that the 
ins tan ton  represents a tunnel l ing effect between the 
vacua (ii) and (iii), wi thout  affecting tile usual per- 
turbative vacuum (i). 

We remark, however,  that our  discussion (and 

Gribov's one) deals only with spherically symmetric  
gauge transformations [of the form (6) and (16)]. It 
is possible that under  more general gauge transforma- 
tions the structure of the classical vacuum is much 

richer; in such a case the ins tanton would connect  the 
vacuum i) with a new kind of  vacuum, different from 
those described in ii) and iii). Works are in progress 
to fully clarify these points and to unders tand the role 
of  many- ins tan ton  solutions. 
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